Coating of Tungsten Wire with Ni/Al Multilayers for Self-Healing Applications
نویسندگان
چکیده
Self-healing materials are able to partially or completely reverse the damage inflicted on them. The possibility of self-healing mechanical and chemical failures that occur during service will improve the lifetime and reliability of structural materials. For this purpose, two main steps must be considered: (i) detection, and (ii) repairing (healing) of cracks. The exothermic character of reactive multilayers has potential for self-healing applications, namely in the healing step. In this context, Ni(V)/Al multilayer thin films were deposited onto tungsten wires by magnetron sputtering from two targets. A detailed microstructural characterization was carried out by scanning and transmission electron microscopy after deposition, as well as after ignition by applying an electrical discharge. The as-deposited films presented an irregular layered structure with local defects not observed for flat substrates, although Niand Al-rich nanolayers could be distinguished. The as-reacted films were constituted by Al3Ni2 grains with Al3V phase at the grain boundaries. In order to use reactive multilayers for self-healing purposes, the heat released must be maximised by improving the microstructure of the nanolayered films. Nevertheless, after ignition, the Ni(V)/Al multilayer films deposited onto W wire underwent a self-sustained reaction, releasing heat.
منابع مشابه
Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method
Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4).6H2O, Co(SO4).7H2O, Cu(SO4) and H3BO3) using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD) patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX) analysis confirmed the purity of deposited samples. ...
متن کاملDesigning and Fabrication of Electrochromic Windows Using Tungsten Oxide Films Prepared Through Sol-gel Coating on a Glass
In this study, a sol-gel peroxotungstic acid sol was employed to deposit tungsten oxide (WO3) films by the spin-coating technique. In view of smart window applications, electrochromic windows were then designed and fabricated using a thin tungsten oxide film. For this purpose, Glass/ FTO/ WO3/ electrolyte/ FTO/Glass could be of use due to its special structure that consists of an electrochromic...
متن کاملSilver nanoparticle aided self-healing of polyelectrolyte multilayers.
Self-healing is the ability of a material to repair mechanical damage. The lifetime of a coating or film might be lengthened with this capacity. Water enabled self-healing of polyelectrolyte multilayers has been reported, using systems that grow via the interdiffusion of polyelectrolyte chains. Due to high mobility of the polyelectrolyte chains within the assembly, it is possible for lateral di...
متن کاملTHE FORMATION OF TiAl3 DURING HEAT TREATMENT IN EXPLOSIVELY WELDED Ti-Al MULTILAYERS
Metallic-intermetallic laminate (MIL) composites are promising materials for structural applications especially in the aerospace industry. One of the interesting laminate composites is the Ti-TiAl 3 multilayer. In this work, commercially pure sheets of aluminum and titanium with almost equal thickness of around 0.5 mm were explosively joined. The achieved multilayers were annealed at 630 ℃in di...
متن کاملFEASIBILITY OF PRODUCING NANO STRUCTURED METALLIC AND NON-METALLIC COATINGS ON Al SUBSTRATE USING MECHANICAL COATING ROUTE
In this paper, the possibility of mechanical coating of aluminum with either Ni or SiC using planetary ball mill was studied. The Al substrate was fixed inside of the vial lid of a planetary ball mill filled with milling balls and starting powder. The phase analysis and crystallite size measurement of the coatings were carried out using X-ray diffraction (XRD) method. Scanning electron micro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017